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Challenge: insufficient local context
| want to go to a Giants game so bad

Solution: homophily theory
e Neighbors have similar properties.

REPRESENTATIONS

Surface features: ¢(x, y¢, t)

Statistical dense features used by Yang and Chang
(2015), extracted from

e A named entity recognizer
e An entity type recognizer

e Some statistics of the Wikipedia pages

Distributed representations of authors, men-
tions, and entities

e Author embeddings (Tang et al., 2015): vt
— social connected users are close to each other
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e Mention embeddings (Ling et al., 2015): v

— the average of embeddings of words that the
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mention contains: Red Sox = (Red + Sox) /2

e Entity embeddings (Mikolov et al., 2013): Véi)

— the pre-trained Freebase entity embeddings
released by Google

~ Freebase

Entity homophily: socially linked individuals share similar
interests 1n entities.
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Overview
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e A multilayer perceptron (MLP) is adopted to
model surface features (g1).

e Two bilinear scoring functions are employed
to explicitly leverages the assumptions (g2):
— entity homophily
— semantically related mentions are likely to be
linked to similar entities

Learning

L = maxyey, (A(y,y") +s(x,y,u)) —s(x,y*, u)
Inference

AN

y = al'g maxyeyx (A(Y7 y*) + 8(X7 Y U))

e Non-overlapping structure

Tweet: thought u were a Red Sox fan

Overlapped Red” ‘Sox’ ‘Red Sox’

mentions: —\‘ /_

Entities: Nil

In order to link ‘Red Sox” to a real entity, ‘Red’
and ‘Sox” should be linked to Nil.

Data: NEEL training data (Cano et al., 2014)

Network # Author # Relation
FOLLOWER 1,317 1,604
MENTION 1,317 379
RETWEET 1,317 342

Metric: entity-driven similarity between authors

e Cosine similarity between the vectors of enti-
ties mentioned by authors (Ritter et al., 2011).

EXPERIMENTS

Social network expansion

e We expand the FOLLOWER, MENTION, and
RETWEET networks by including nodes that
will do the most to density the author net-
works.

e The new networks result in better author em-

beddings.

Network # Author # Relation

FOLLOWER+ 8,772 286,800

MENTION+ 6,119 57,045

RETWEET+ 7,404 59,313
Results

e NEEL-test set (Cano et al., 2014)

F1 gains over baseline with surface features

Yang+ (2015)

Our approach

Baseline: 75.4
+ Author

+ Mention

+ Author S-MART

SUMMARY

e We present a novel neural network model for
entity linking that exploits distributed repre-

sentations of users, mentions, and entities.

e Our system leverages social network struc-
tures by utilizing entity homophily to improve
entity disambiguation.

Results (and 90% confidence intervals)
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e TACL set (Fang and Chang, 2014)

F1 gains over baseline with surface features

Our approach Yang+ (2015)

S-MART
Baseline: 67.0

+ Author
+ Mention

+ Author

e Comparison of different social networks

NEEL-test set - F1 gains over baseline

Baseline: 75.4

FOLLOWER+ MENTION+

TACL set - F1 gains over baseline

RETWEET+

Baseline: 67.0

FOLLOWER+ MENTION+ RETWEET+

e Our neural network model is on par with the
tree-based model (Yang and Chang 2015) with
surface features, but it is much easier to add
additional information in the neural network
model.




