

Toward Socially-Infused Information Extraction: Embedding Authors, Mentions, and Entities

ENTITY LINKING ON MICROBLOGS

Challenge: insufficient local context I want to go to a Giants game so bad

Solution: *homophily* theory

• Neighbors have similar properties.

REPRESENTATIONS

Surface features: $\phi(\mathbf{x}, y_t, t)$

Statistical dense features used by Yang and Chang (2015), extracted from

- A named entity recognizer
- An entity type recognizer
- Some statistics of the Wikipedia pages

Distributed representations of authors, mentions, and entities

- Author embeddings (Tang et al., 2015): $\mathbf{v}_{u}^{(u)}$
- social connected users are close to each other in the embedding space.

- Mention embeddings (Ling et al., 2015): $\mathbf{v}_t^{(m)}$ – the average of embeddings of words that the
 - mention contains: $\overrightarrow{\text{Red Sox}} = (\overrightarrow{\text{Red}} + \overrightarrow{\text{Sox}})/2$
- Entity embeddings (Mikolov et al., 2013): $\mathbf{v}_{y_t}^{(e)}$
- the pre-trained Freebase entity embeddings released by Google

Yi Yang*, Ming-Wei Chang[#], and Jacob Eisenstein^{*} * Georgia Tech, # Microsoft Research

Network	# Author	# Relation
FOLLOWER	1,317	1,604
MENTION	1,317	379
RETWEET	1,317	342

RETWEET networks by including nodes that will do the most to densify the author net-

Network	# Author	# Relation
FOLLOWER+	8,772	286,800
MENTION+	6,119	57,045
RETWEET+	7,404	59,313

entity linking that exploits distributed repretures by utilizing entity homophily to improve • Our neural network model is on par with the tree-based model (Yang and Chang 2015) with surface features, but it is much easier to add additional information in the neural network model.

