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Convolutional Neural Networks for Sentence Classification

Natural Language Processing (Almost) from Scratch

Question Answering over Freebase with
Multi-Column Convolutional Neural Networks

[Yoon Kim (2014)]
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Linear convolution filters
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Linear convolution filters
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Linear convolution filters
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Local label consistency ratio

Ratio of m-grams that share the same labels as the original sentences.
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Socher et al. (2013)



Recurrent neural filters
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Recurrent neural filters
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Recurrent neural filters
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Recurrent neural filters

c, = h;g
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LSTM unit
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Cho et al. (2014); Hochreiter and Schmidhuber (1997)



CNN architectures

CNN sentence encoder

V — ma,X{C}, Where C — [017 Co, - 7Cn—m—|-1]

Yoon Kim (2014); Yang et al. (2015)
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CNN architectures

CNN sentence encoder

V — ma,X{C}, Where C — [017 Co, - 7Cn—m—|-1]

Sentence classification (e.g., sentiment classification)
p(y|v) = Softmax(W,v)

Sentence matching (e.g., answer sentence selection)

p(y|vi, vo) = Sigmoid(vlTWUVQ)

Yoon Kim (2014); Yang et al. (2015)



Data

Sentence classification
Stanford Sentiment Treebank (SST)

Binary classification / fine-grained classification

Socher et al. (2013); Wang et al. (2007); Yang et al. (2015)



Data

Sentence classification
Stanford Sentiment Treebank (SST)

Binary classification / fine-grained classification

Sentence matching
QASent
WikiQA

Socher et al. (2013); Wang et al. (2007); Yang et al. (2015)



Results: sentence classification
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Results: sentence classification

» Accuracy results for binary sentiment classification

26 1 90.0 89.3 89.8

CNN: CNN:
linear-filter RNF-LSTM

LSTM  LSTM-maxpool



12

Results: sentence matching

MAP results on the WikiQA dataset
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Results: sentence matching

» MAP results on the QASent dataset

0.750 0.780 0.745 0.762
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Key phrase hit rate

Key phrases: the phrase label is the same as the sentence label (SST)
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Conclusions

Conventional CNNs adopt linear convolution filters that fails
to account for language compositionality.

Recurrent neural filters (RNFs) yield much better results
than linear filters on many NLP tasks.

Code: https://github.com/bloomberg/cnn-rnf
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