

Bloomberg

Convolutional Neural Networks with Recurrent Neural Filters

Yi Yang ASAPP Chunyang Xiao
Bloomberg

- Limit high-order filters
 - compositionality
 - long-term deps.

- Limit high-order filters
 - compositionality
 - long-term deps.
- Filters are independent
 - duplication

Local label consistency ratio

Ratio of m-grams that share the same labels as the original sentences.

don't give up until it's too late

$$\mathbf{h}_t = \text{RNN}(\mathbf{h}_{t-1}, \mathbf{x}_t)$$

$$\mathbf{h}_t = \text{RNN}(\mathbf{h}_{t-1}, \mathbf{x}_t)$$

$$\mathbf{h}_t = \text{RNN}(\mathbf{h}_{t-1}, \mathbf{x}_t)$$

- RNN is implemented as
 - gated recurrent unit
 - LSTM unit

CNN architectures

CNN sentence encoder

$$\mathbf{v} = \max{\{\mathbf{C}\}}, \text{ where } \mathbf{C} = [\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_{n-m+1}]$$

CNN architectures

CNN sentence encoder

$$\mathbf{v} = \max{\{\mathbf{C}\}}, \text{ where } \mathbf{C} = [\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_{n-m+1}]$$

> Sentence classification (e.g., sentiment classification)

$$p(y|\mathbf{v}) = \text{Softmax}(\mathbf{W}_v\mathbf{v})$$

CNN architectures

CNN sentence encoder

$$\mathbf{v} = \max{\{\mathbf{C}\}}, \text{ where } \mathbf{C} = [\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_{n-m+1}]$$

> Sentence classification (e.g., sentiment classification)

$$p(y|\mathbf{v}) = \text{Softmax}(\mathbf{W}_v\mathbf{v})$$

Sentence matching (e.g., answer sentence selection)

$$p(y|\mathbf{v}_1,\mathbf{v}_2) = \text{Sigmoid}(\mathbf{v}_1^{\top}\mathbf{W}_v\mathbf{v}_2)$$

Data

- Sentence classification
 - Stanford Sentiment Treebank (SST)
 - Binary classification / fine-grained classification

Data

- Sentence classification
 - Stanford Sentiment Treebank (SST)
 - Binary classification / fine-grained classification
- Sentence matching
 - QASent
 - WikiQA

Accuracy results for fine-grained sentiment classification

Accuracy results for fine-grained sentiment classification

Accuracy results for fine-grained sentiment classification

Accuracy results for binary sentiment classification

MAP results on the WikiQA dataset

MAP results on the WikiQA dataset

MAP results on the WikiQA dataset

MAP results on the QASent dataset

Key phrase hit rate

Key phrases: the phrase label is the same as the sentence label (SST)

Conclusions

Conventional CNNs adopt linear convolution filters that fails to account for language compositionality.

Recurrent neural filters (RNFs) yield much better results than linear filters on many NLP tasks.

Code: https://github.com/bloomberg/cnn-rnf