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» Digital humanities research

» How does the portrayal of men and
women differ in Shakespeare’s plays?

» What's the language use patterns in
North American slave narratives?

» NLP can help!

» Only if NLP works for historical texts ...

[Muralidharan and Hearst, 2011&2012]
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Spelling normalization
Rayson et al. (2007)

Scheible et al. (2011)
Bollmann (2011)

Map from historical spellings to
contemporary forms.

Domain adaptation (this work)

Build robust NLP systems with Yang & Eisenstein (2014)
representation learning. Yang & Eisenstein (2015)
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Spelling Normalization
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Representation Learning

Hee said nobody had said anything agt mee .

OOV Context IV  Context
said said
He
Was I Was
Hee { came came
We
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2 Generic representations
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I[word2vec; Mikolov et al., 2013}
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3
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Penn Corpora of Historical English

Modern British English (MBE) Early Modern English (EME)

1840-1914

322,255 1640-1710 614,315

1770-1839 427,424 1570-1639 706,587

1700-1769 343,024 1500-1569 640,255
0 110,000 220,000 330,000 440,000 0 177,500 355,000 532,500 710,000
# of tokens # of tokens

[Krochand Taylor, 2000; Kroch et al., 2004]
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Systems

Support vector machine (SVM) tagger
Sixteen basic feature templates by Ratnaparkhi (1996)

Representation learning methods

Structural correspondence learning (SCL)
Brown clustering

word2vec embeddings

Multiple feature embeddings (FEMA)

[Blitzer et al., 2006; Brown et al., 1992; Mikolov et al.,2013]
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Adaptation from PTB

Penn Treebank

Train 969,905

Modern British English Test 1 1,092,703

Early Modern English Test 2 1,961,157

0 500,000 1,000,000 1,500,000 2,000,000

# of tokens
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Insufficient data annotation for historical texts.

Low resource languages
Specific genres, styles, or epochs
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Error rate

Normalization vs. Representation Learning
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Error Analysis

Annotation inconsistencies and tagset mismatches

token annotations in PCHE annotations in PTB
(comma) , (comma; 83.4%) (comma)
’ . (period; 16.6%) ’
. , (comma; 12.3%) .
. (period) (period: 87.7%) . (period)
TO (54.6%)
to IN (44.3%) 10
all/any/every JJ (quantifier) DT
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Conclusions

Feature embeddings outperform word embeddings by
exploiting task-specific information in feature templates.

Representation learning and spelling normalization are
complementary for improving tagging performance.

Tagset mismatches make it hard to evaluate modern POS
taggers for historical English.



