Part-of-Speech Tagging for Historical English

Yi Yang and Jacob Eisenstein
Georgia Tech
Digital humanities research

- How does the portrayal of men and women differ in Shakespeare’s plays?
- What’s the language use patterns in North American slave narratives?

[Muralidharan and Hearst, 2011&2012]
Digital humanities research

How does the portrayal of men and women differ in Shakespeare’s plays?

What’s the language use patterns in North American slave narratives?

NLP can help!

[Muralidharan and Hearst, 2011&2012]
Digital humanities research

- How does the portrayal of men and women differ in Shakespeare’s plays?
- What’s the language use patterns in North American slave narratives?

- NLP can help!
- Only if NLP works for historical texts ...

[Muralidharan and Hearst, 2011&2012]
Hee said nobody had said anything agt mee.
Hee said nobody had said anything against me.

- Spelling variation

[Henry Oxinden, 1660]
Stanford POS Tagger

Stanford: NNP VBD NN VBD VBN NN NN NN

Hee said nobody had said anything agt mee.

- Spelling variation
Hee said nobody had said anything.

- Spelling variation
Transfer Loss for POS Tagging

Modern English

Error rate

[Rayson et al., 2007]
Transfer Loss for POS Tagging

Modern English: 3.0
Early Modern English: 18.0

[Rayson et al., 2007]
Approaches

- Spelling normalization
 - Map from historical spellings to contemporary forms.

- Rayson et al. (2007)
- Scheible et al. (2011)
- Bollmann (2011)
Approaches

- Spelling normalization
 - Map from historical spellings to contemporary forms.
- Domain adaptation (this work)
 - Build robust NLP systems with representation learning.

Rayson et al. (2007)
Scheible et al. (2011)
Bollmann (2011)

Yang & Eisenstein (2014)
Yang & Eisenstein (2015)
Original: Hee said nobody had said anything *agt mee*.

Normalized: Hee said nobody had said anything aged me.
Original: Hee said nobody had said anything *agt mee*.

Normalized: Hee said nobody had said anything aged me.

- Correct normalization

[VARD; Baron and Rayson, 2008]
Spelling Normalization

Original: Hee said nobody had said anything against me.

Normalized: Hee said nobody had said anything aged me.

- Correct normalization
- Incorrect normalization

[VARD; Baron and Rayson, 2008]
Spelling Normalization

Original: Hee said nobody had said anything against me.

Normalized: He said nobody had said anything aged me.

- Correct normalization
- Incorrect normalization
- False negative

[VARD; Baron and Rayson, 2008]
Spelling Normalization

Gold: PRP

Stanford: NNP VBD NN VBD VBN NN JJ PRP

Normalized: Hee said nobody had said anything aged me .

X X ✓

[VARD; Baron and Rayson, 2008]
Spelling Normalization

Gold: PRP IN
Stanford: N P VBD NN VBD VBN NN IN
Normalized: Hee said nobody had said anything aged me .

[VARD; Baron and Rayson, 2008]
Hee said nobody had said anything agt mee.

<table>
<thead>
<tr>
<th>OOV Context</th>
<th>IV Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hee { said, was, came, told, ... }</td>
<td>He { I, We, ... } { said, was, came, told, ... }</td>
</tr>
</tbody>
</table>
Model
Hee said nobody had said anything *agt mee*.
Hee said nobody had said anything \textit{agt mee}.
Hee said nobody had said anything *agt mee* .

features

- CurrWord = hee
- NextWord = said
- Prefix1 = h
- Suffix1 = e
- ...

[FEMA; Yang and Eisenstein, 2015]
Hee said nobody had said anything agt mee.
Hee said nobody had said anything *agt mee*.

features

- **CurrWord** = hee
- **NextWord** = said
- **Prefix1** = h
- **Suffix1** = e
- ...

[FEMA; Yang and Eisenstein, 2015]
Hee said nobody had said anything \texttt{agt mee}.
Feature Embeddings

\[p(f_t | f_2) \propto \exp \left(u_2^T v_t \right) \]

features

\[\begin{align*}
 \text{CurrWord} &= \text{hee} \\
 \text{NextWord} &= \text{said} \\
 \text{Prefix1} &= \text{h} \\
 \text{Suffix1} &= \text{e} \\
 \ldots
\end{align*} \]

Input embeddings

Output embeddings

\[\begin{align*}
 v_1 &\quad \bullet \quad \bullet \quad \bullet \\
 v_2 &\quad \circ \quad \circ \quad \circ \\
 v_3 &\quad \bullet \quad \bullet \quad \bullet \\
 v_4 &\quad \bullet \quad \bullet \quad \bullet
\end{align*} \]

[FEMA; Yang and Eisenstein, 2015]
\[p(f_t | f_2) \propto \exp (u_2^\top v_t) \]

\[\ell = \sum_{t \neq 2} \log p(f_t | f_2) \]

\[p(f_t | f_2) \propto \exp (u_2^\top v_t) \]

\[\ell = \sum_{t \neq 2} \log p(f_t | f_2) \]

features

\{
 CurrWord = hee
 NextWord = said
 Prefix1 = h
 Suffix1 = e
 ...
\}

[FEMA; Yang and Eisenstein, 2015]
Word Embeddings

words
- hee
- said
- nobody
- had
- ...

features
- currWord = hee
- nextWord = said
- prefix1 = h
- suffix1 = e
- ...

- Word embeddings
- Feature embeddings

[word2vec; Mikolov et al., 2013]
Word Embeddings

- **words**
 - hee
 - said
 - nobody
 - had
 - ...

- **features**
 - CurrWord = hee
 - NextWord = said
 - Prefix1 = h
 - Suffix1 = e
 - ...

- **Word embeddings**
- **Generic representations**
- **Feature embeddings**

[word2vec; Mikolov et al., 2013]
Word Embeddings

- **Words**
 - hee
 - said
 - nobody
 - had
 - ...

- **Features**
 - CurrWord = hee
 - NextWord = said
 - Prefix1 = h
 - Suffix1 = e
 - ...

- **Word embeddings**
- **Generic representations**
- **Feature embeddings**
- **Task-specific representations**

[word2vec; Mikolov et al., 2013]
Word Embeddings

- **Word embeddings**
 - Generic representations
 - Word co-occurrences

- **Feature embeddings**
 - Task-specific representations

Words
- hee
- said
- nobody
- had
- ...

Features
- CurrWord = hee
- NextWord = said
- Prefix1 = h
- Suffix1 = e
- ...

[word2vec; Mikolov et al., 2013]
Word Embeddings

words
- hee
- said
- nobody
- had
-...

features
- CurrWord = hee
- NextWord = said
- Prefix1 = h
- Suffix1 = e
-...

- Word embeddings
- Generic representations
- Word co-occurrences
- Feature embeddings
- Task-specific representations
- Feature co-occurrences

[word2vec; Mikolov et al., 2013]
Learning from Multiple Domains

- Previous work on unsupervised domain adaptation involves in two domains.

[FEMA; Yang and Eisenstein, 2015]
Learning from Multiple Domains

- Previous work on unsupervised domain adaptation involves in two domains.
- Unsupervised multi-domain adaptation

[FEMA; Yang and Eisenstein, 2015]
Previous work on unsupervised domain adaptation involves in two domains.

Unsupervised multi-domain adaptation
Hee said nobody had said anything agt mee.
Multiple Feature Embeddings

<table>
<thead>
<tr>
<th>Domain Attributes:</th>
<th>Genre</th>
<th>Epoch</th>
</tr>
</thead>
</table>

Hee said nobody had said anything *agt mee*.

[FEMA; Yang and Eisenstein, 2015]
Hee said nobody had said anything agt mee.
Multiple Feature Embeddings

Domain Attributes:

<table>
<thead>
<tr>
<th>Genre</th>
<th>Epoch</th>
</tr>
</thead>
<tbody>
<tr>
<td>letters</td>
<td>1600+</td>
</tr>
</tbody>
</table>

Hee said nobody had said anything *agt mee*.

features

- CurrWord = hee
- NextWord = said
- Prefix1 = h
- Suffix1 = e
- ...

[FEMA; Yang and Eisenstein, 2015]
Multiple Feature Embeddings

Domain Attributes:

- **Genre**: letters
- **Epoch**: 1600+

Hee said nobody had said anything *agt mee*.

Features:

1. CurrWord = hee
2. NextWord = said
 - Prefix1 = h
 - Suffix1 = e
 - ...

\[
\text{(shared)} + \text{(letters)} + \text{(1600+)}
\]

[FEMA; Yang and Eisenstein, 2015]
Hee said nobody had said anything agt mee.

Domain Attributes:
- Genre
- Epoch
 - letters
 - 1600+

Features:
- CurrWord = hee
- NextWord = said
- Prefix1 = h
- Suffix1 = e
- ...

\[
\begin{align*}
\text{features} &= \{\text{CurrWord = hee, NextWord = said, Prefix1 = h, Suffix1 = e, ...}\} \\
&= \begin{align*}
&= \begin{array}{c}
&\text{1} \quad \text{2} \quad \text{3} \quad \text{4} \\
&\text{features} = \{\text{currWord} = \text{hee, nextWord} = \text{said, prefix1} = \text{h, suffix1} = \text{e, ...}\} \\
&= \begin{array}{c}
&\text{(shared)} \quad \text{+} \quad \text{(letters)} \quad \text{+} \quad \text{(1600+)} \\
&\text{=}\end{array}
\end{align*}
\]

[FEMA; Yang and Eisenstein, 2015]
Hee said nobody had said anything *agt mee*.
Multiple Feature Embeddings

\[
\begin{align*}
\mathbf{u}_2 &= \mathbf{h}_2^{(\text{shared})} + \mathbf{h}_2^{(\text{letters})} + \mathbf{h}_2^{(1600+)} \\
\end{align*}
\]

Hee said nobody had said anything agt mee.

\[
\begin{align*}
\text{features} \left\{ \\
\text{CurrWord} &= \text{hee} \\
\text{NextWord} &= \text{said} \\
\text{Prefix1} &= \text{h} \\
\text{Suffix1} &= \text{e} \\
\cdots
\end{align*}
\]

[FEMA; Yang and Eisenstein, 2015]
Multiple Feature Embeddings

\[p(f_t|f_2) \propto \exp(\mathbf{u}_2^\top \mathbf{v}_t) \]

\[\mathbf{u}_2 = \mathbf{h}_2^{(\text{shared})} + \mathbf{h}_2^{(\text{letters})} + \mathbf{h}_2^{(1600+)} \]

“Hee” said nobody had said anything.

features \[\begin{align*}
\text{CurrWord} &= \text{hee} \\
\text{NextWord} &= \text{said} \\
\text{Prefix1} &= \text{h} \\
\text{Suffix1} &= \text{e} \\
\ldots
\end{align*} \]

[FEMA; Yang and Eisenstein, 2015]
Experiments
Penn Corpora of Historical English

Modern British English (MBE)

<table>
<thead>
<tr>
<th>Time Period</th>
<th># of Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>1840-1914</td>
<td>322,255</td>
</tr>
<tr>
<td>1770-1839</td>
<td>427,424</td>
</tr>
<tr>
<td>1700-1769</td>
<td>343,024</td>
</tr>
</tbody>
</table>

Early Modern English (EME)

<table>
<thead>
<tr>
<th>Time Period</th>
<th># of Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>1640-1710</td>
<td>614,315</td>
</tr>
<tr>
<td>1570-1639</td>
<td>706,587</td>
</tr>
<tr>
<td>1500-1569</td>
<td>640,255</td>
</tr>
</tbody>
</table>

[Kroch and Taylor, 2000; Kroch et al., 2004]
Tagset Mappings

- Penn Corpora of Historical English (PCHE) tagset: 83 tags
- Penn Treebank (PTB) tagset: 45 tags

[Moon and Baldridge, 2007]
Tagset Mappings

- Penn Corpora of Historical English (PCHE) tagset: 83 tags
- Penn Treebank (PTB) tagset: 45 tags

<table>
<thead>
<tr>
<th>PCHE</th>
<th>PTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJ</td>
<td>JJ</td>
</tr>
<tr>
<td>ADV</td>
<td>RB</td>
</tr>
<tr>
<td>ALSO</td>
<td>RB</td>
</tr>
<tr>
<td>VB</td>
<td>VB</td>
</tr>
<tr>
<td>VBI</td>
<td>VB</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Systems

- Support vector machine (SVM) tagger
 - Sixteen basic feature templates by Ratnaparkhi (1996)
Systems

- Support vector machine (SVM) tagger
 - Sixteen basic feature templates by Ratnaparkhi (1996)

- Representation learning methods
 - Structural correspondence learning (SCL)
 - Brown clustering
 - word2vec embeddings
 - Multiple feature embeddings (FEMA)

[Blitzer et al., 2006; Brown et al., 1992; Mikolov et al., 2013]
Temporal Adaptation

Modern British English (MBE)

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Train</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1840-1914</td>
<td>322,255</td>
<td>427,424</td>
<td>343,024</td>
</tr>
<tr>
<td>1770-1839</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700-1769</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Early Modern English (EME)

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Train</th>
<th>Test 1</th>
<th>Test 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1640-1710</td>
<td>614,315</td>
<td>706,587</td>
<td>640,255</td>
</tr>
<tr>
<td>1570-1639</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500-1569</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

of tokens
Results: Modern British English

Average error rate

Baseline: 4.6
Results: Modern British English

Average error rate

- Baseline: 4.6
- SCL: 4.3
- Brown: 4.2
- word2vec: 4.4
Results: Modern British English

Average error rate

Baseline: 4.6
SCL: 4.3
Brown: 4.2
word2vec: 4.4
FEMA: 3.7
(Our method): (-0.9)
Results: Early Modern English

Baseline: 9.4
Results: Early Modern English

Average error rate

Baseline: 9.4
SCL: 8.2
Brown: 8.0
word2vec: 8.3
Results: Early Modern English

Average error rate

Baseline: 9.4
SCL: 8.2
Brown: 8.0
word2vec: 8.3
FEMA: 6.6
(Our method): (- 2.8)
Adaptation from PTB

- Penn Treebank
 - Train: 969,905

- Modern British English
 - Test 1: 1,092,703

- Early Modern English
 - Test 2: 1,961,157

of tokens

0 500,000 1,000,000 1,500,000 2,000,000
Adaptation from PTB

Standard evaluation scenario for English POS tagging.
Adaptation from PTB

Standard evaluation scenario for English POS tagging.

Insufficient data annotation for historical texts.

- Low resource languages
- Specific genres, styles, or epochs
Results: Modern British English

Error rate

Baseline

18.9
Results: Modern British English

Baseline: 18.9
SCL: 18.4
Brown: 18.4
word2vec: 18.3
Results: Modern British English

<table>
<thead>
<tr>
<th>Method</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.9</td>
</tr>
<tr>
<td>SCL</td>
<td>18.4</td>
</tr>
<tr>
<td>Brown</td>
<td>18.4</td>
</tr>
<tr>
<td>word2vec</td>
<td>18.3</td>
</tr>
<tr>
<td>FEMA</td>
<td>17.5 (-1.4)</td>
</tr>
</tbody>
</table>

(Our method)
Results: Early Modern English

Error rate

Baseline: 25.9
Results: Early Modern English

Error rate

<table>
<thead>
<tr>
<th>Method</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>25.9</td>
</tr>
<tr>
<td>SCL</td>
<td>24.1</td>
</tr>
<tr>
<td>Brown</td>
<td>24.0</td>
</tr>
<tr>
<td>word2vec</td>
<td>24.2</td>
</tr>
</tbody>
</table>
Results: Early Modern English

Error rate

- Baseline: 25.9
- SCL: 24.1
- Brown: 24.0
- word2vec: 24.2
- FEMA: 22.1

(Our method) (-3.8)
Normalization vs. Representation Learning

Error rate

Baseline: 25.9
Representation learning: 22.1 (-3.8)
FEMA: -4.9
Normalization vs. Representation Learning

<table>
<thead>
<tr>
<th></th>
<th>Error Rate</th>
<th>Normalization vs. Representation Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td>FEMA</td>
<td>22.1 (-3.8)</td>
<td></td>
</tr>
<tr>
<td>VARD</td>
<td>23.3 (-2.6)</td>
<td></td>
</tr>
</tbody>
</table>
Normalization vs. Representation Learning

<table>
<thead>
<tr>
<th>Error Rate</th>
<th>Baseline</th>
<th>Representation Learning</th>
<th>Spelling Normalization</th>
<th>Representation Learning + Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25.9</td>
<td>22.1 (-3.8)</td>
<td>23.3 (-2.6)</td>
<td>21.0 (-4.9)</td>
</tr>
<tr>
<td></td>
<td>VARD</td>
<td>FEMA+ VARD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Error Analysis

- Annotation inconsistencies and tagset mismatches

<table>
<thead>
<tr>
<th>token</th>
<th>annotations in PCHE</th>
<th>annotations in PTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>, (comma)</td>
<td>, (comma; 83.4%)</td>
<td>, (comma)</td>
</tr>
<tr>
<td>. (period; 16.6%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Error Analysis

- Annotation inconsistencies and tagset mismatches

<table>
<thead>
<tr>
<th>token</th>
<th>annotations in PCHE</th>
<th>annotations in PTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>, (comma)</td>
<td>, (comma; 83.4%)</td>
<td>, (comma)</td>
</tr>
<tr>
<td>. (period)</td>
<td>, (comma; 12.3%)</td>
<td>. (period)</td>
</tr>
<tr>
<td></td>
<td>. (period; 16.6%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>. (period; 87.7%)</td>
<td></td>
</tr>
</tbody>
</table>
Error Analysis

- Annotation inconsistencies and tagset mismatches

<table>
<thead>
<tr>
<th>token</th>
<th>annotations in PCHE</th>
<th>annotations in PTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>, (comma)</td>
<td>, (comma; 83.4%) . (period; 16.6%)</td>
<td>, (comma)</td>
</tr>
<tr>
<td>. (period)</td>
<td>, (comma; 12.3%) . (period; 87.7%)</td>
<td>. (period)</td>
</tr>
<tr>
<td>to</td>
<td>TO (54.6%) IN (44.3%)</td>
<td>TO</td>
</tr>
</tbody>
</table>
Error Analysis

- **Annotation inconsistencies and tagset mismatches**

<table>
<thead>
<tr>
<th>token</th>
<th>annotations in PCHE</th>
<th>annotations in PTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>, (comma)</td>
<td>, (comma; 83.4%)</td>
<td>, (comma)</td>
</tr>
<tr>
<td>. (period)</td>
<td>. (comma; 12.3%) , (period; 87.7%)</td>
<td>. (period)</td>
</tr>
<tr>
<td>to</td>
<td>TO (54.6%) , IN (44.3%)</td>
<td>TO</td>
</tr>
<tr>
<td>all/any/every</td>
<td>JJ (quantifier)</td>
<td>DT</td>
</tr>
</tbody>
</table>
Conclusions
Conclusions

- Feature embeddings outperform word embeddings by exploiting task-specific information in feature templates.
Conclusions

- Feature embeddings outperform word embeddings by exploiting task-specific information in feature templates.

- Representation learning and spelling normalization are complementary for improving tagging performance.
Conclusions

- Feature embeddings outperform word embeddings by exploiting task-specific information in feature templates.
- Representation learning and spelling normalization are complementary for improving tagging performance.
- Tagset mismatches make it hard to evaluate modern POS taggers for historical English.