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Abstract

Unsupervised domain adaptation often re-
lies on transforming the instance represen-
tation. However, most such approaches
are designed for bag-of-words models, and
ignore the structured features present in
many problems in NLP. We propose a
new technique called marginalized struc-
tured dropout, which exploits feature
structure to obtain a remarkably simple
and efficient feature projection. Applied
to the task of fine-grained part-of-speech
tagging on a dataset of historical Por-
tuguese, marginalized structured dropout
yields state-of-the-art accuracy while in-
creasing speed by more than an order-of-
magnitude over previous work.

1 Introduction

Unsupervised domain adaptation is a fundamen-
tal problem for natural language processing, as
we hope to apply our systems to datasets unlike
those for which we have annotations. This is par-
ticularly relevant as labeled datasets become stale
in comparison with rapidly evolving social media
writing styles (Eisenstein, 2013), and as there is
increasing interest in natural language processing
for historical texts (Piotrowski, 2012). While a
number of different approaches for domain adap-
tation have been proposed (Pan and Yang, 2010;
Søgaard, 2013), they tend to emphasize bag-of-
words features for classification tasks such as sen-
timent analysis. Consequently, many approaches
rely on each instance having a relatively large
number of active features, and fail to exploit the
structured feature spaces that characterize syn-
tactic tasks such as sequence labeling and pars-
ing (Smith, 2011).

As we will show, substantial efficiency im-
provements can be obtained by designing domain

adaptation methods for learning in structured fea-
ture spaces. We build on work from the deep
learning community, in which denoising autoen-
coders are trained to remove synthetic noise from
the observed instances (Glorot et al., 2011a). By
using the autoencoder to transform the original
feature space, one may obtain a representation
that is less dependent on any individual feature,
and therefore more robust across domains. Chen
et al. (2012) showed that such autoencoders can
be learned even as the noising process is analyt-
ically marginalized; the idea is similar in spirit
to feature noising (Wang et al., 2013). While
the marginalized denoising autoencoder (mDA) is
considerably faster than the original denoising au-
toencoder, it requires solving a system of equa-
tions that can grow very large, as realistic NLP
tasks can involve 105 or more features.

In this paper we investigate noising functions
that are explicitly designed for structured feature
spaces, which are common in NLP. For example,
in part-of-speech tagging, Toutanova et al. (2003)
define several feature “templates”: the current
word, the previous word, the suffix of the current
word, and so on. For each feature template, there
are thousands of binary features. To exploit this
structure, we propose two alternative noising tech-
niques: (1) feature scrambling, which randomly
chooses a feature template and randomly selects
an alternative value within the template, and (2)
structured dropout, which randomly eliminates
all but a single feature template. We show how it
is possible to marginalize over both types of noise,
and find that the solution for structured dropout is
substantially simpler and more efficient than the
mDA approach of Chen et al. (2012), which does
not consider feature structure.

We apply these ideas to fine-grained part-of-
speech tagging on a dataset of Portuguese texts
from the years 1502 to 1836 (Galves and Faria,
2010), training on recent texts and evaluating



on older documents. Both structure-aware do-
main adaptation algorithms perform as well as
standard dropout — and better than the well-
known structural correspondence learning (SCL)
algorithm (Blitzer et al., 2007) — but structured
dropout is more than an order-of-magnitude faster.
As a secondary contribution of this paper, we
demonstrate the applicability of unsupervised do-
main adaptation to the syntactic analysis of histor-
ical texts.

2 Model

In this section we first briefly describe the de-
noising autoencoder (Glorot et al., 2011b), its ap-
plication to domain adaptation, and the analytic
marginalization of noise (Chen et al., 2012). Then
we present three versions of marginalized denois-
ing autoencoders (mDA) by incorporating differ-
ent types of noise, including two new noising pro-
cesses that are designed for structured features.

2.1 Denoising Autoencoders
Assume instances x1, . . . ,xn, which are drawn
from both the source and target domains. We will
“corrupt” these instances by adding different types
of noise, and denote the corrupted version of xi
by x̃i. Single-layer denoising autoencoders recon-
struct the corrupted inputs with a projection matrix
W : Rd → Rd, which is estimated by minimizing
the squared reconstruction loss

L =
1

2

n∑
i=1

||xi −Wx̃i||2. (1)

If we write X = [x1, . . . ,xn] ∈ Rd×n, and we
write its corrupted version X̃, then the loss in (1)
can be written as

L(W) =
1

2n
tr

[(
X−WX̃

)> (
X−WX̃

)]
.

(2)
In this case, we have the well-known closed-

form solution for this ordinary least square prob-
lem:

W = PQ−1, (3)

where Q = X̃X̃> and P = XX̃>. After ob-
taining the weight matrix W, we can insert non-
linearity into the output of the denoiser, such as
tanh(WX). It is also possible to apply stack-
ing, by passing this vector through another autoen-
coder (Chen et al., 2012). In pilot experiments,
this slowed down estimation and had little effect
on accuracy, so we did not include it.

High-dimensional setting Structured predic-
tion tasks often have much more features than
simple bag-of-words representation, and perfor-
mance relies on the rare features. In a naive im-
plementation of the denoising approach, both P
and Q will be dense matrices with dimension-
ality d × d, which would be roughly 1011 ele-
ments in our experiments. To solve this problem,
Chen et al. (2012) propose to use a set of pivot
features, and train the autoencoder to reconstruct
the pivots from the full set of features. Specifi-
cally, the corrupted input is divided to S subsets

x̃i =
[
(x̃)1i

>
, . . . , (x̃)Si

>
]>

. We obtain a projec-
tion matrix Ws for each subset by reconstructing
the pivot features from the features in this subset;
we can then use the sum of all reconstructions as
the new features, tanh(

∑S
s=1W

sXs).

Marginalized Denoising Autoencoders In the
standard denoising autoencoder, we need to gen-
erate multiple versions of the corrupted data X̃
to reduce the variance of the solution (Glorot et
al., 2011b). But Chen et al. (2012) show that it
is possible to marginalize over the noise, analyt-
ically computing expectations of both P and Q,
and computing

W = E[P]E[Q]−1, (4)

where E[P] =
∑n

i=1E[xix̃
>
i ] and E[Q] =∑n

i=1E[x̃ix̃
>
i ]. This is equivalent to corrupting

the data m→∞ times. The computation of these
expectations depends on the type of noise.

2.2 Noise distributions

Chen et al. (2012) used dropout noise for domain
adaptation, which we briefly review. We then de-
scribe two novel types of noise that are designed
for structured feature spaces, and explain how they
can be marginalized to efficiently compute W.

Dropout noise In dropout noise, each feature is
set to zero with probability p > 0. If we define
the scatter matrix of the uncorrupted input as S =
XX>, the solutions under dropout noise are

E[Q]α,β =

{
(1− p)2Sα,β if α 6= β

(1− p)Sα,β if α = β
, (5)

and
E[P]α,β = (1− p)Sα,β, (6)



where α and β index two features. The form of
these solutions means that computing W requires
solving a system of equations equal to the num-
ber of features (in the naive implementation), or
several smaller systems of equations (in the high-
dimensional version). Note also that p is a tunable
parameter for this type of noise.

Structured dropout noise In many NLP set-
tings, we have several feature templates, such as
previous-word, middle-word, next-word, etc, with
only one feature per template firing on any token.
We can exploit this structure by using an alterna-
tive dropout scheme: for each token, choose ex-
actly one feature template to keep, and zero out all
other features that consider this token (transition
feature templates such as 〈yt, yt−1〉 are not con-
sidered for dropout). Assuming we haveK feature
templates, this noise leads to very simple solutions
for the marginalized matrices E[P] and E[Q],

E[Q]α,β =

{
0 if α 6= β
1
KSα,β if α = β

(7)

E[P]α,β =
1

K
Sα,β, (8)

ForE[P], we obtain a scaled version of the scat-
ter matrix, because in each instance x̃, there is ex-
actly a 1/K chance that each individual feature
survives dropout. E[Q] is diagonal, because for
any off-diagonal entry E[Q]α,β , at least one of α
and β will drop out for every instance. We can
therefore view the projection matrix W as a row-
normalized version of the scatter matrix S. Put
another way, the contribution of β to the recon-
struction for α is equal to the co-occurence count
of α and β, divided by the count of β.

Unlike standard dropout, there are no free
hyper-parameters to tune for structured dropout.
Since E[Q] is a diagonal matrix, we eliminate the
cost of matrix inversion (or of solving a system of
linear equations). Moreover, to extend mDA for
high dimensional data, we no longer need to di-
vide the corrupted input x̃ to several subsets.1

For intuition, consider standard feature dropout
with p = K−1

K . This will look very similar to
structured dropout: the matrix E[P] is identical,
and E[Q] has off-diagonal elements which are
scaled by (1 − p)2, which goes to zero as K is

1E[P] is an r by d matrix, where r is the number of pivots.

large. However, by including these elements, stan-
dard dropout is considerably slower, as we show in
our experiments.

Scrambling noise A third alternative is to
“scramble” the features by randomly selecting al-
ternative features within each template. For a fea-
ture α belonging to a template F , with probability
p we will draw a noise feature β also belonging
to F , according to some distribution q. In this
work, we use an uniform distribution, in which
qβ = 1

|F | . However, the below solutions will also
hold for other scrambling distributions, such as
mean-preserving distributions.

Again, it is possible to analytically marginal-
ize over this noise. Recall that E[Q] =∑n

i=1E[x̃ix̃
>
i ]. An off-diagonal entry in the ma-

trix x̃x̃> which involves features α and β belong-
ing to different templates (Fα 6= Fβ) can take four
different values (xi,α denotes feature α in xi):

• xi,αxi,β if both features are unchanged,
which happens with probability (1− p)2.

• 1 if both features are chosen as noise features,
which happens with probability p2qαqβ .

• xi,α or xi,β if one feature is unchanged and
the other one is chosen as the noise feature,
which happens with probability p(1 − p)qβ
or p(1− p)qα.

The diagonal entries take the first two values
above, with probability 1 − p and pqα respec-
tively. Other entries will be all zero (only one
feature belonging to the same template will fire
in xi). We can use similar reasoning to compute
the expectation of P. With probability (1 − p),
the original features are preserved, and we add the
outer-product xix>i ; with probability p, we add the
outer-product xiq>. Therefore E[P] can be com-
puted as the sum of these terms.

3 Experiments

We compare these methods on historical Por-
tuguese part-of-speech tagging, creating domains
over historical epochs.

3.1 Experiment setup

Datasets We use the Tycho Brahe corpus to
evaluate our methods. The corpus contains a total
of 1,480,528 manually tagged words. It uses a set
of 383 tags and is composed of various texts from



historical Portuguese, from 1502 to 1836. We di-
vide the texts into fifty-year periods to create dif-
ferent domains. Table 1 presents some statistics of
the datasets. We hold out 5% of data as develop-
ment data to tune parameters. The two most recent
domains (1800-1849 and 1750-1849) are treated
as source domains, and the other domains are tar-
get domains. This scenario is motivated by train-
ing a tagger on a modern newstext corpus and ap-
plying it to historical documents.

Dataset # of Tokens

Total Narrative Letters Dissertation Theatre

1800-1849 125719 91582 34137 0 0
1750-1799 202346 57477 84465 0 60404
1700-1749 278846 0 130327 148519 0
1650-1699 248194 83938 115062 49194 0
1600-1649 295154 117515 115252 62387 0
1550-1599 148061 148061 0 0 0
1500-1549 182208 126516 0 55692 0

Overall 1480528 625089 479243 315792 60404

Table 1: Statistics of the Tycho Brahe Corpus

CRF tagger We use a conditional random field
tagger, choosing CRFsuite because it supports
arbitrary real valued features (Okazaki, 2007),
with SGD optimization. Following the work of
Nogueira Dos Santos et al. (2008) on this dataset,
we apply the feature set of Ratnaparkhi (1996).
There are 16 feature templates and 372, 902 fea-
tures in total. Following Blitzer et al. (2006), we
consider pivot features that appear more than 50
times in all the domains. This leads to a total of
1572 pivot features in our experiments.

Methods We compare mDA with three alterna-
tive approaches. We refer to baseline as training
a CRF tagger on the source domain and testing on
the target domain with only base features. We also
include PCA to project the entire dataset onto a
low-dimensional sub-space (while still including
the original features). Finally, we compare against
Structural Correspondence Learning (SCL; Blitzer
et al., 2006), another feature learning algorithm.
In all cases, we include the entire dataset to com-
pute the feature projections; we also conducted ex-
periments using only the test and training data for
feature projections, with very similar results.

Parameters All the hyper-parameters are de-
cided with our development data on the training
set. We try different low dimension K from 10 to

2000 for PCA. Following Blitzer (2008) we per-
form feature centering/normalization, as well as
rescaling for SCL. The best parameters for SCL
are dimensionality K = 25 and rescale factor
α = 5, which are the same as in the original pa-
per. For mDA, the best corruption level is p = 0.9
for dropout noise, and p = 0.1 for scrambling
noise. Structured dropout noise has no free hyper-
parameters.

3.2 Results
Table 2 presents results for different domain adap-
tation tasks. We also compute the transfer ra-
tio, which is defined as adaptation accuracy

baseline accuracy , shown in
Figure 1. The generally positive trend of these
graphs indicates that adaptation becomes progres-
sively more important as we select test sets that are
more temporally remote from the training data.

In general, mDA outperforms SCL and PCA,
the latter of which shows little improvement over
the base features. The various noising approaches
for mDA give very similar results. However, struc-
tured dropout is orders of magnitude faster than
the alternatives, as shown in Table 3. The scram-
bling noise is most time-consuming, with cost
dominated by a matrix multiplication.

Method PCA SCL mDA

dropout structured scambling

Time 7,779 38,849 8,939 339 327,075

Table 3: Time, in seconds, to compute the feature
transformation

4 Related Work

Domain adaptation Most previous work on do-
main adaptation focused on the supervised setting,
in which some labeled data is available in the tar-
get domain (Jiang and Zhai, 2007; Daumé III,
2007; Finkel and Manning, 2009). Our work fo-
cuses on unsupervised domain adaptation, where
no labeled data is available in the target domain.
Several representation learning methods have been
proposed to solve this problem. In structural corre-
spondence learning (SCL), the induced represen-
tation is based on the task of predicting the pres-
ence of pivot features. Autoencoders apply a sim-
ilar idea, but use the denoised instances as the la-
tent representation (Vincent et al., 2008; Glorot et
al., 2011b; Chen et al., 2012). Within the con-
text of denoising autoencoders, we have focused



Task baseline PCA SCL mDA

dropout structured scrambling

from 1800-1849
→ 1750 89.12 89.09 89.69 90.08 90.08 90.01
→ 1700 90.43 90.43 91.06 91.56 91.57 91.55
→ 1650 88.45 88.52 87.09 88.69 88.70 88.57
→ 1600 87.56 87.58 88.47 89.60 89.61 89.54
→ 1550 89.66 89.61 90.57 91.39 91.39 91.36
→ 1500 85.58 85.63 86.99 88.96 88.95 88.91
from 1750-1849
→ 1700 94.64 94.62 94.81 95.08 95.08 95.02
→ 1650 91.98 90.97 90.37 90.83 90.84 90.80
→ 1600 92.95 92.91 93.17 93.78 93.78 93.71
→ 1550 93.27 93.21 93.75 94.06 94.05 94.02
→ 1500 89.80 89.75 90.59 91.71 91.71 91.68

Table 2: Accuracy results for adaptation from labeled data in 1800-1849, and in 1750-1849.

Figure 1: Transfer ratio for adaptation to historical text

on dropout noise, which has also been applied as
a general technique for improving the robustness
of machine learning, particularly in neural net-
works (Hinton et al., 2012; Wang et al., 2013).

On the specific problem of sequence labeling,
Xiao and Guo (2013) proposed a supervised do-
main adaptation method by using a log-bilinear
language adaptation model. Dhillon et al. (2011)
presented a spectral method to estimate low di-
mensional context-specific word representations
for sequence labeling. Huang and Yates (2009;
2012) used an HMM model to learn latent rep-
resentations, and then leverage the Posterior Reg-
ularization framework to incorporate specific bi-
ases. Unlike these methods, our approach uses a
standard CRF, but with transformed features.

Historical text Our evaluation concerns syntac-
tic analysis of historical text, which is a topic of in-
creasing interest for NLP (Piotrowski, 2012). Pen-
nacchiotti and Zanzotto (2008) find that part-of-
speech tagging degrades considerably when ap-
plied to a corpus of historical Italian. Moon and
Baldridge (2007) tackle the challenging problem
of tagging Middle English, using techniques for

projecting syntactic annotations across languages.
Prior work on the Tycho Brahe corpus applied su-
pervised learning to a random split of test and
training data (Kepler and Finger, 2006; Dos San-
tos et al., 2008); they did not consider the domain
adaptation problem of training on recent data and
testing on older historical text.

5 Conclusion and Future Work

Denoising autoencoders provide an intuitive so-
lution for domain adaptation: transform the fea-
tures into a representation that is resistant to the
noise that may characterize the domain adaptation
process. The original implementation of this idea
produced this noise directly (Glorot et al., 2011b);
later work showed that dropout noise could be an-
alytically marginalized (Chen et al., 2012). We
take another step towards simplicity by showing
that structured dropout can make marginalization
even easier, obtaining dramatic speedups without
sacrificing accuracy.
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Raúl P. Renterı́a. 2008. Portuguese part-of-speech
tagging using entropy guided transformation learn-
ing. In Proceedings of the 8th international con-
ference on Computational Processing of the Por-
tuguese Language, PROPOR ’08, pages 143–152,
Berlin, Heidelberg. Springer-Verlag.

Naoaki Okazaki. 2007. Crfsuite: a fast implementa-
tion of conditional random fields (crfs).

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. Knowledge and Data Engineer-
ing, IEEE Transactions on, 22(10):1345–1359.

Marco Pennacchiotti and Fabio Massimo Zanzotto.
2008. Natural language processing across time:
An empirical investigation on italian. In Advances
in Natural Language Processing, pages 371–382.
Springer.

Michael Piotrowski. 2012. Natural language process-
ing for historical texts. Synthesis Lectures on Hu-
man Language Technologies, 5(2):1–157.



Adwait Ratnaparkhi. 1996. A maximum entropy
model for part-of-speech tagging. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, April 16.

Noah A Smith. 2011. Linguistic structure prediction.
Synthesis Lectures on Human Language Technolo-
gies, 4(2):1–274.

Anders Søgaard. 2013. Semi-supervised learning and
domain adaptation in natural language processing.
Synthesis Lectures on Human Language Technolo-
gies, 6(2):1–103.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 173–180. Association for Compu-
tational Linguistics.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. 2008. Extracting and
composing robust features with denoising autoen-
coders. In Proceedings of the 25th international
conference on Machine learning, pages 1096–1103.
ACM.

Sida I. Wang, Mengqiu Wang, Stefan Wager, Percy
Liang, and Christopher D. Manning. 2013. Fea-
ture noising for log-linear structured prediction. In
Empirical Methods in Natural Language Processing
(EMNLP).

Min Xiao and Yuhong Guo. 2013. Domain adapta-
tion for sequence labeling tasks with a probabilis-
tic language adaptation model. In Sanjoy Dasgupta
and David Mcallester, editors, Proceedings of the
30th International Conference on Machine Learn-
ing (ICML-13), volume 28, pages 293–301. JMLR
Workshop and Conference Proceedings.


